
L:\GUIDES\UNCERTAINTY_GUIDE_TESTING  (07/24/2002) Page 1 of 42 

 
 
 
 
 
 
 
 
 
 
 
 

A2LA Guide for the  
Estimation of Measurement Uncertainty  

In Testing  
 

July 2002 
 

By 
Thomas M. Adams 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2002 by A2LA.  
 
All rights reserved. No part of this document may be reproduced in any form or by any means without the prior 
written permission of A2LA. 



L:\GUIDES\UNCERTAINTY_GUIDE_TESTING  (07/24/2002) Page 2 of 42 

 
Table of Contents 

 
Acknowledgements .......................................................................................................................................................3 

1.0   Introduction ...........................................................................................................................................................4 

2.0 Repeatability, reproducibility, trueness estimates, and control charts in measurement uncertainty estimation.5 

2.1 Control charts ................................................................................................................................................5 
2.2 Repeatability and reproducibility...................................................................................................................6 

2.2.1 Control of bias ...............................................................................................................................................7 
2.2.2 Control of precision .......................................................................................................................................7 

3.0 ISO Guide to the expression of uncertainty in measurement.............................................................................8 

3.1 Specifying the measurand..............................................................................................................................8 
3.2 Modeling the measurement............................................................................................................................9 
3.3 Quantifying the uncertainty contributors and their associated uncertainties ...............................................10 

3.3.1 Type A evaluation of standard uncertainty ..................................................................................................10 
3.3.2 Probability distributions...............................................................................................................................11 
3.3.3 Type B evaluation of standard uncertainty ..................................................................................................19 

3.4 Sensitivity coefficients.................................................................................................................................19 
3.5 Combining the contributors .........................................................................................................................24 

3.5.1 Non-correlated input quantities ...................................................................................................................24 
3.5.2 Correlated input quantities...........................................................................................................................24 
3.5.3 Relative combined variance.........................................................................................................................26 

3.6 Calculating the expanded uncertainty..........................................................................................................27 
3.6.1 Estimating the coverage factor k..................................................................................................................27 

3.7 Reasonability ...............................................................................................................................................30 
3.8 Reporting uncertainty ..................................................................................................................................31 
3.9 Summary of the method...............................................................................................................................32 
3.10 Uncertainty “budgets” .................................................................................................................................33 

Appendix 1. Definitions ..............................................................................................................................................34 

Appendix 2. Student’s t-distribution............................................................................................................................37 

Appendix 3.  Uncertainty Estimate for a Brinell Hardness Test..................................................................................38 

References and Useful Web Sites................................................................................................................................41 

 



L:\GUIDES\UNCERTAINTY_GUIDE_TESTING  (07/24/2002) Page 3 of 42 

Acknowledgements 
 
I would like to thank A2LA’s Measurement Advisory Committee and calibration assessors for their efforts in 
reviewing the manuscript and providing commentary and corrections. 
 
In particular, I gratefully acknowledge the following individuals for their insightful comments and stimulating 
uncertainty discussions over the years:  Mr. Ralph Veale, Dr. Richard Turner, Dr. Henrik Nielsen, Mr. Phil Stein, 
Dr. Ted Doiron, and Mr. Dan Tholen. 
 
Finally, this guidance could not have been written without the support and encouragement of A2LA, its Advisory 
Committees, and management. 
 
 
Thom Adams 
Frederick, MD 
July 2002 



L:\GUIDES\UNCERTAINTY_GUIDE_TESTING  (07/24/2002) Page 4 of 42 

1.0   Introduction 
 
The purpose of measurement is to determine a value of a quantity of interest (the measurand).  Examples of 
measurands include the boiling point of water under 1 atmosphere of pressure, or the Rockwell hardness of a metal 
specimen, or the tensile strength of a plastic compound, or the length of a metal bar at 20°C.  Notice that the 
objective of a measurement is to determine a value of the measurand, in other words, to sample one value out of a 
universe of possible values, since, in general, when one repeats a measurement many times, one will obtain many 
different answers. 
 
This observed variability in the results of repeated measurements arises because influence quantities that can affect 
the measurement result are not held constant.  In general, there are many- if not infinitely many- influence quantities 
affecting a measurement result.  Although it is impossible to identify all of them, the most significant can be 
identified and the magnitude of their effects on the measurement result can be estimated.  Further, the way they 
impact the measurement result can, in many cases, be mathematically modeled. 
 
Given the inherent variability of measurement, a statement of a measurement result is incomplete (perhaps even 
meaningless) without an accompanying statement of the estimated uncertainty of measurement (a parameter 
characterizing the range of values within which the value of the measurand can be said to lie within a specified level 
of confidence).  The incompleteness of measurement results unqualified by uncertainty estimates is evidenced by the 
common situations when two technicians in the same lab determine different measurement results, or different labs 
determine different results, or when disagreements arise between customer and supplier.  Even with Youden plots, 
commonly taken as a measure of the agreement among different test labs in an interlaboratory comparison, outliers 
are identified even if the difference between the lab’s result and the grand mean is smaller than the actual 
uncertainty of the measurement (were it to be determined!). 
 
However, even granting the importance of uncertainty estimates, it is just as important that the method used to 
estimate uncertainties be generally agreed upon, at least between interested parties.  Given the nature of today’s 
global economy, however, the method should be universally adopted, understood, and equitably applied.  The ISO 
Guide to the Expression of Uncertainty in Measurement (GUM) and the corresponding American National Standard 
ANSI/NCSL Z540-2-1997 provide the current international consensus method for estimating measurement 
uncertainty.  It is equally applicable to calibration and test results and it forms the basis for accreditation 
requirements relating to measurement uncertainty estimation. 
 
The GUM method supposes that a mathematical model is available or can be derived that describes the functional 
relationship between the measurand and the influence quantities.  In the absence of this model, the GUM method 
does not apply very well.  Further, it must be admitted that, for many people, the mathematics and concepts in the 
GUM are somewhat removed from daily experience. 
 
There are, however, measures of precision that can be used as the basis for estimating uncertainty that are well 
known in the testing community.  These measures include reproducibility and repeatability and what ISO 5725 
refers to as “intermediate measures of precision”.  These measures are standard deviations derived from the analysis 
of experimental data, and if the reproducibility experiment is designed in such a way that variability due to all of the 
major sources of uncertainty is sampled (as required by ISO/IEC 17025 section 5.4.6.3), then reliable estimates of 
uncertainty can be based entirely on experiment without having to resort to the mathematics and theory found in the 
GUM that so many people find daunting. 
 
Therefore, this document also provides guidance on estimation of uncertainty based on reproducibility estimates and 
control charting.  This guidance is applicable to all fields of testing.  The method assumes that all significant 
systematic effects have been identified and either eliminated or else compensated for by the application of suitable 
corrections. 
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2.0 Repeatability, reproducibility, trueness estimates, and control charts in 
measurement uncertainty estimation 

 
Although the GUM method presented below (c.f. Section 3) is generally regarded as the complete, rigorous method 
for uncertainty estimation, in practice many people find it to be too complicated and, as mentioned in the 
Introduction, it does not apply well in the absence of a mathematical model for the measurement.  For example, in 
the absence of a mathematical model, it would be necessary to devise experiments in order to estimate the sensitivity 
coefficients (c.f. Section 3.4) of each of the identified uncertainty contributors.  This could be an arduous task 
indeed. 
 
In this section we will focus on two measures of precision, repeatability and reproducibility, and measures of 
trueness to show a simple method for basing uncertainty estimates on these measures.  This method has the great 
advantages that most testing labs are already acquainted with repeatability and reproducibility experiments and that 
a suitably devised reproducibility experiment will include the effects of all of the major uncertainty contributors.  
Thus, adequate uncertainty estimates can be derived without recourse to the mathematics of the GUM.  For complete 
details, the reader is urged to consult ISO 5725, in particular part 2, “Accuracy (trueness and precision) of 
measurement methods and results – Basic method for the determination of repeatability and reproducibility of a 
standard measurement method”.  In addition, a draft technical standard is being prepared by ISO designated as 
ISO/DTS 21748.  This document will be an excellent guide to the use of repeatability, reproducibility and trueness 
estimates in estimation of measurement uncertainty.  Also, this section briefly discusses the use of control charts as 
the basis for uncertainty estimates.  For details on control charts, the reader is referred to, for example, ISO 8258, 
“Shewhart control charts”.  In what follows, we assume that the reader is already familiar with control charting. 

2.1 Control charts 
 
Recalling that: 
 
1) measurement uncertainty is defined as a “parameter, associated with the result of a measurement, that 

characterizes the dispersion of the values that could reasonably be attributed to the measurand”; 
 
2) this parameter is a standard deviation, or a multiple of a standard deviation, that can be derived from the 

statistical analysis of experimental data; 
 
3) upper and lower action limits are established on control charts so that approximately 997 measurements out of 

1000 are within the action limits for a measurement process in statistical control; 
 
4) upper and lower warning limits are established on control charts so that approximately 950 measurements out of 

1000 are within the warning limits for a measurement process in statistical control, 
 
we can see immediately that the action limits provide an estimate of measurement uncertainty at approximately the 
99.7% level of confidence (“3 sigma”) and that the warning limits will provide estimates of uncertainty at 
approximately the 95% level of confidence (“2 sigma”). 
 
There are a few caveats associated with estimating measurement uncertainty based on control chart data: 
 
1) The control test sample should have a certified or otherwise known or accepted value.  This way, bias in the 

measurement process may be identified and corrected for in the calculation of measurement results, or else 
eliminated.  There will be some uncertainty associated with bias corrections so it may be necessary to identify 
and quantify this uncertainty and root-sum-square it with the standard deviation associated with the control 
limits. 

 
2) The value of the measurand represented by the control sample should be close to the value of the measurand 

actually obtained during routine testing since, in general, the uncertainty of a measurement will be some 
function of the “level of the test”, or value of the measurand.  For example, the uncertainty associated with melt 
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flow rate determinations will depend on the value of the melt flow rate: uncertainties associated with very low 
flow rates will in general be different from uncertainties associated with very high melt flow rates.  
Consequently, it may be necessary to track several control samples at different levels of the measurand in order 
to properly assess the measurement uncertainty for the various levels of the measurand encountered in a testing 
laboratory. 

 
3) The measurement process for control samples should be the same as for routine samples, including subsampling 

and sample preparation.  If it is not, then additional uncertainty components may have to be considered (c.f. 
section 3 for the general method of doing this). 

 
4) The measurement process must be in statistical control as demonstrated by the control chart.  This means that a 

sufficient number of data points must be collected before a judgment can be made as to whether or not the 
process is in control and also to ensure that the estimate of the population standard deviation is reasonably 
accurate.  There are no universally applicable rules here, but normally 20 – 25 subgroups of 4 or 5 are 
considered adequate for providing preliminary estimates.  Measurement processes that are not in statistical 
control must be brought into control before the control chart can be properly constructed. 

 
Even with those caveats, control charting is probably the simplest, most direct way of estimating measurement 
uncertainty.  However, if, for example, certified reference materials are unavailable or very expensive or if a test is 
very expensive or time-consuming to perform, control charting may not be a viable option and the methods of the 
GUM presented below may have to be used. 

2.2 Repeatability and reproducibility 
 
For the purposes of this section, the following definitions are taken from ISO 3534-1 (note the differences between 
these definitions and the definitions from the VIM given in Appendix 1): 
 
Precision is the closeness of agreement between independent test results obtained under stipulated conditions.  
Precision depends upon the distribution of random errors and does not relate to the true value or the specified value 
of the measurand.  The measure of precision is usually computed as a standard deviation of test results.  Less 
precision is indicated by a higher standard deviation.  “Independent test results” means results obtained in a manner 
not influenced by any previous result on the same or similar test item.  Quantitative measures of precision depend 
critically on the stipulated conditions.  Repeatability and reproducibility conditions are particular examples of 
extreme stipulated conditions. 
 
Repeatability is precision under repeatability conditions, i.e. conditions where independent test results are obtained 
with the same method on identical test items in the same laboratory by the same operator using the same equipment 
within short intervals of time.  Repeatability standard deviation is the standard deviation of test results obtained 
under repeatability conditions. 
 
Reproducibility is precision under reproducibility conditions, i.e. conditions where independent test results are 
obtained with the same method on identical test items in different laboratories by different operators using different 
equipment.  Reproducibility standard deviation is the standard deviation of test results obtained under 
reproducibility conditions and is a measure of the dispersion of test results under reproducibility conditions.  A valid 
statement of reproducibility requires specification of the conditions changed.  For example, ISO 5725 considers four 
factors subject to change: operator, equipment, calibration, and time.  A statement of reproducibility will indicate 
which of these factors have been varied in the course of the experiment. 
 
Bias is the difference between the expectation of the test results and an accepted reference value.  Bias is the total 
systematic error as contrasted to random error.  There may be one or more systematic error components contributing 
to the bias.  A larger systematic difference from the accepted reference value is reflected by a larger bias value.   
 
Trueness is the closeness of agreement between the average value obtained from a large set of test results and an 
accepted reference value.  The measure of trueness is normally expressed in terms of bias. 
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It will usually be the case that if the laboratory is applying a standard, validated test method, the test method will be 
accompanied by estimates of precision and bias obtained by interlaboratory comparison during the course of method 
validation.  For example, ASTM test methods are required to be accompanied by statements of precision and, where, 
applicable, a statement of bias.  In the case of ASTM test methods, the statement of precision will include an 
expression of the within-laboratory standard deviation  (Sr) and the between-laboratory standard deviation (SR). 
 
With all of this in mind, we can see that a laboratory will be able to establish reasonable uncertainty estimates if 
 
1) it can establish that its bias when applying the measurement method is within the bias stated in the test method, 

and 
 
2) it can establish that the precision (i.e., reproducibility with several factors varied) obtained during application of 

the test method is within the between-laboratory standard deviation stated in the test method, and 
 
3) it can identify any influence quantities that may not have been adequately studied during the interlaboratory 

comparison, and quantify the influence quantities, associated uncertainties and sensitivity coefficients (c.f. 
section 3.4). 

 
If these conditions are satisfied, then the laboratory can estimate its measurement uncertainty by combining the 
uncertainty associated with bias corrections, its reproducibility, and the uncertainties of any influence quantities 
identified in (3) above via the “root-sum-square” method given below in section 3.5.  To establish that these 
conditions are fulfilled, the laboratory may proceed as follows: 

2.2.1 Control of bias 
 
The laboratory may demonstrate that its measurement bias is within the limits expected by proper application of the 
test method by either of the following methods: 
 
1) Using a certified reference material 
 
Using an appropriate reference standard or material, the laboratory should perform replicate measurements to form 
an estimate of its bias, which is the difference between the mean of its test results and the certified value of the 
standard or material.  If the absolute value of this bias is less than twice the reproducibility standard deviation given 
in the precision statement in the test method, then the laboratory may consider that its bias is under control. 
 
2) Interlaboratory comparison 
 
Laboratories participating in proficiency testing schemes will have available to them data from a large number of 
laboratories which they can use to estimate the bias of their measurement results.  Comparison of the lab mean to the 
grand mean or other assigned value in such programs, for example, will allow them to demonstrate that their bias is 
under adequate control. 

2.2.2 Control of precision 
 
To verify control of precision, the laboratory may perform a number of replicate measurements under repeatability 
conditions and compare its repeatability standard deviation sl to the repeatability standard deviation sr given in the 
precision statement in the test method.  Comparing sl to sr using an F-test, for example, to test for significant 
difference, will allow the laboratory to demonstrate control of precision.  If sl differs significantly from sr, then the 
laboratory should use sl in its estimate of uncertainty, otherwise it can use sr. 
 
 
Once the laboratory has demonstrated control of precision and bias, it is free to use the estimates of these quantities 
given in the test method as the basis for its estimate of measurement uncertainty.  However, it must demonstrate on 
an on-going basis that precision and bias continue to be under adequate control.  This is accomplished, for example, 
by proper measurement assurance techniques including control charting.  Further, as mentioned above, the reference 
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materials or standards used in these verifications must be relevant to the levels of the test encountered by the 
laboratory in its routine testing.  Once these conditions are fulfilled and satisfied on an on-going basis, the laboratory 
has all of the information it needs to estimate its measurement uncertainty. 

3.0 ISO Guide to the expression of uncertainty in measurement 

3.1 Specifying the measurand 
 
Any uncertainty analysis must begin with a clear specification of the measurand.  Although this step may seem 
trivial, it is in fact the most important and possibly the most difficult.  Without a clear understanding of what the 
objective of the measurement is, and the factors influencing the measurement result, it is impossible to arrive at a 
meaningful estimate of the uncertainty. 
 
At this point it may be worthwhile to recall the admonition found in ANSI/NCSL Z540-2-1997, the US Guide to the 
Expression of Uncertainty in Measurement: 
 

Although this Guide provides a framework for assessing uncertainty, it cannot substitute for 
critical thinking, intellectual honesty, and professional skill.  The evaluation of uncertainty is 
neither a routine task nor a purely mathematical one; it depends on detailed knowledge of the 
nature of the measurand and of the measurement.  The quality and utility of the uncertainty quoted 
for the result of a measurement therefore ultimately depend on the understanding, critical analysis, 
and integrity of those who contribute to the assignment of its value.1 

 
Especially for complex tests, it is not necessarily clear what is being measured and what is influencing the 
measurement result.  Even with industry standard test methods that set tolerances on all the various parts and 
features of a testing machine, places limits on the environmental conditions, and specifies the method of preparation 
of the samples, the nature of the material itself may be the major source of variability in test results.  If the 
laboratory does not understand this, but sees the test or testing machine as a “black box” from which numbers are 
spewed by some mysterious process, then it is impossible for the laboratory to analyze the uncertainty of the 
measurements involved in the test. 
 
On the other hand, the required level of detail in the definition of the measurand must be dictated by the required 
level of accuracy of the measurement.   
 
The specification of a measurand may require statements about quantities such as time, temperature, and pressure. 
 
Example.  We will consider the tensile strength at break of a fiber-reinforced composite according to the method 
specified in ASTM D638. 
 
Note that, implicit in this definition of the measurand, there are several factors specified- all possible contributors to 
the uncertainty of the tensile strength result- including: 
 
a) specification of the accuracy and other characteristics of the testing machine (through the requirements of D638 

itself and also ASTM E4 and E74 for the verification of testing machines and force indicating devices); 
 
b) specification of the environmental conditions under which the test is to be conducted; 
 
                                                           
1 GUM 3.4.8.  Since uncertainty evaluation is neither a purely mathematical task nor a merely routine task, the 
details of its procedures in every particular as applied to a given test can never be codified to the point of complete 
unambiguousness.  Reasonable and informed observers can and do disagree on the particulars of a given uncertainty 
analysis and it must be recognized that there is nothing that can be called the “final word” on the uncertainty 
analysis of a given measurement.  For this reason, this guidance document, while presenting the necessary 
mathematical machinery needed to produce an uncertainty evaluation in accordance with the GUM, emphasizes the 
importance of “reasonability” (see below) in assessing the final uncertainty estimate. 
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c) specification of the molding conditions and dimensional characteristics of the test samples; 
 
d) specification of the conditioning environment for the molded test samples as found, for example, in material 

specifications; 
 
e) specification of the accuracy of the device used to measure the thickness and width of the molded test items. 
 
It is important to be aware of the factors included explicitly and implicitly in the definition of a measurand.  This 
will generally necessitate, as mentioned above, a thorough understanding of the principles, assumptions, and science 
underlying the measurement at hand. 

3.2 Modeling the measurement 
 
The uncertainty in the result of a measurement is a result both of our incomplete knowledge of the value of the 
measurand and of the factors influencing it.  Even after correcting for known systematic effects, the corrected 
measurement result is still only an estimate of the value of the measurand because of random effects and because our 
knowledge of the magnitudes of the corrections is itself only an estimate.  It is important to note that the result of a 
measurement after correction could be (unbeknownst to the analyst) very close to the value of the measurand, even 
though the measurement itself may have a large uncertainty.  In other words, the uncertainty of a measurement must 
not be confused with the remaining unknown (and unknowable) “error”. 
 
There are many possible sources of uncertainty in measurement including2: 
 
1) incomplete definition of the measurand; 
 
2) imperfect realization of the definition of the measurand; 
 
3) nonrepresentative sampling (the sample measured may not represent the defined measurand); 
 
4) inadequate knowledge of the effects of environmental conditions on the measurement or imperfect 

measurement of environmental conditions; 
 
5) personal bias in reading analog instruments, including the effects of parallax; 
 
6) finite resolution or discrimination threshold; 
 
7) inexact values of measurement standards and reference materials; 
 
8) inexact values of constants and other parameters obtained from external sources and used in the data-reduction 

algorithm; 
 
9) approximations and assumptions incorporated in the measurement method and procedure; 
 
10) variations in repeated observations of the measurand under apparently identical conditions. 
 
These sources of uncertainty are not necessarily independent and some or all of items 1-9 can contribute to the 
variations in repeated observations.  If all of the quantities on which the result of a measurement depend could be 
varied, then its uncertainty could be evaluated based purely on a statistical treatment of experimental data.  But this 
is seldom possible in practice because of the time and expense involved in such an exhaustive experimental 
evaluation of uncertainty.  Instead, the GUM assumes that the uncertainty of a measurement result can be evaluated 
based on a mathematical model of the measurement.  Further, it is assumed that this model can be made as accurate 
as needed relative to the required accuracy of the measurement. 
 

                                                           
2 GUM 3.3.2. 
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Nevertheless, because the mathematical model is always incomplete, all relevant input quantities should be varied to 
the extent possible so that the uncertainty estimate can be based, as much as possible, on experimental data.  
Whenever possible, the use of check standards and control charts (often called measurement assurance) should be 
used to establish that a measurement system is under statistical control, and these data should be used as part of the 
effort to obtain a reasonable estimate of the measurement uncertainty.  When the observed data shows that the 
mathematical model is incomplete, then the model should be revised3. 
 
In general, the mathematical model will be a function of several input quantities showing how the measurement 
result is obtained from the input quantities.  If the input quantities are designated as x1, x2, …, xn, then we can write 
the functional relationship between the measurement result y and the input quantities xi as  
 

),...,,( 21 nxxxfy = . 
 
This function is to be understood in the broadest possible context as including every possible source of variation in 
the measurement result including all corrections and correction factors.  Consequently, the mathematical model may 
be a very complicated relationship between many input quantities that is never explicitly written down.   
 
Example.  Tensile strength at break, S, according to ASTM D638 is defined as the force F necessary to break a test 
bar divided by the cross sectional area of the bar.  The cross-sectional area of the bar is defined as the product of its 
thickness T and its width W.  Therefore, as a first approximation, we will take as the mathematical model of our 
tensile strength measurement: 
 

TW
FWTFfS == ),,( . 

 
We call this a first approximation since we can immediately see that a number of potential influence quantities are 
not explicitly included in this function.  For example, influence quantities such as temperature effects on the 
dimensions and strength of the bar, or inertial effects within the testing machine, or variability due to varying 
“necking” or “drawing” behaviors of the different test samples during the application of force, are not included.  
Depending on the final uncertainty estimate obtained based on this approximation, it may be necessary to revise the 
model function to include additional influence quantities if it is felt that the first approximation is inadequate. 

3.3 Quantifying the uncertainty contributors and their associated uncertainties 

3.3.1 Type A evaluation of standard uncertainty 
 
A type A uncertainty estimate is an estimate derived from the statistical analysis of experimental data.  (Note that 
the designation “type A” refers to the method by which the uncertainty estimate was obtained.  “Type A” does not 
refer to the nature of the uncertainty contributor itself; in particular, the reader should avoid the temptation to 
identify type A uncertainty estimates as “random” components of uncertainty as is often done.)  Because it is such a 
vast subject of discussion we cannot hope to cover it in all its complexity in this document.  We will focus only on 
the standard deviation of test results as Type A uncertainty estimates.  The reader is urged to consult the GUM and 
ISO 5725 for further details. 
 
It will usually be the case that the best estimate of the value of a measurand will be the average of several test 
results.  If n test results are obtained, then the average is simply the sum of the test results divided by n.  If we 

                                                           
3 In fact, if a laboratory has sufficient data, uncertainty analysis by the method of the GUM is not necessary and the 
uncertainty of measurement requirements of ISO/IEC 17025 can be satisfied via the methods of ISO 5725 or control 
charting as described above.  The GUM will always be applicable to calibration laboratories, but it should be used 
by testing laboratories only in cases where the testing laboratory has insufficient data to establish a reliable estimate 
of its long-term reproducibility.  This will be the case, for example, when the laboratory is a commercial testing 
facility that receives unique items to be tested.  Traceability to appropriate standards will always be required 
regardless of the state of knowledge of reproducibility. 
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designate each of the test results by the symbol xi, then we can write the following equation for the average x  of n 
test results: 

 

∑
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=
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The experimental standard deviation s characterizes the variability, or spread, of the observed values xi.  It is given 
by the equation  
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It is best to use a calculator or spreadsheet program for these calculations.  For example, the functions AVERAGE 
and STDEV in Excel can be used to find the average and standard deviation of test results quickly and easily. 
 
 
Example.  Continuing with the tensile strength example, suppose that 5 bars are tested.  A “test” consists of 
measuring the thickness and width of each specimen and then determining the force required to break each bar.  
Suppose that we obtained the following data: 
 

Bar Thickness, T Width, W Force to break, F Tensile strength, S 

1 0.124 in 0.499 in 830 lb 13414 lb/in2 

2 0.126 in 0.501 in 900 lb 14257 lb/in2 

3 0.125 in 0.500 in 810 lb 12960 lb/in2 

4 0.126 in 0.500 in 870 lb 13810 lb/in2 

5 0.124 in 0.499 in 850 lb 13737 lb/in2 

 

Average, x : 0.125 in 0.4998 in 852.0 lb 13636 lb/in2 

Stdev, s: 0.001 in 0.000837 in 34.93 lb 482.8 lb/in2 

 
From this data, we see that the best estimate4 of the force required to break a bar is the average of the five force 
measurements, or 852.0 lb.  The standard deviation of these 5 results is 34.93 lb.  This is the type A uncertainty 
estimate of the force due to random variations in the testing machine, molding process, sample-curing process, and 
in the material itself.  The standard deviation of the thickness measurements is 0.001 in and the standard deviation of 
the width measurements is 0.000837 in which we will take to be the type A estimates of the uncertainties of the 
thickness and width of an average test bar.  

3.3.2 Probability distributions 
 
A probability distribution is a mathematical function giving the probability that a random variable takes any given 
value or else belongs to a set of values.  For example, different probability distribution functions describe the 

                                                           
4 “Best”, that is, relative to the extremely limited information available in this example.  A laboratory with proper 
measurement assurance programs in place will have much more data to work with and, consequently, a much better 
uncertainty estimate. 
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probability of rolling a “1” on one roll of a six-sided die, or the probability of drawing the ace of spades from a 
standard 52-card deck of cards, or the probability of finding the room temperature to be 70°F. 
 
There are infinitely many possible distributions but some are more useful for our purposes than others.  In this 
section we’ll derive one such distribution, simply present the others, and examine the mathematics behind them; in 
particular we will show how the variances of the distributions are obtained so that the reader can understand the 
origins of the “divisors” used in uncertainty budgets.  It is assumed that the reader has a basic grasp of calculus, 
although this isn’t necessary to understand the ideas presented. 
 
3.3.2.1 Rectangular distribution 
 
We will start with one of the simplest distributions, the so-called “rectangular” or “uniform” distribution.  This 
distribution is used to model cases where the probability of obtaining any value between two limits is equal to the 
probability of obtaining any other value.  (Discrete versions of this distribution can be used to model the dice roll 
and card draw examples given above, for example.) 
 
Graphically, in cases where the distribution of possible values is continuous (as opposed to the dice roll and card 
draw examples), this distribution is just a horizontal line extending between two limits.  (Recall that the equation of 
a horizontal line is f(x) = y = c where c is some constant number corresponding to the point where the line intersects 
the y-axis.) 
 
If the limits are ±a, then we know that the probability of obtaining a number between +a and –a, inclusive, is equal 
to 1 (i.e., it is certain that a number between these limits will be obtained since values outside of these limits are not 
included in the definition of the distribution).  This is a fundamental requirement on all probability distribution 
functions and it is frequently stated by saying that the distribution function must be normalized.  In order to 
normalize a distribution function it is necessary to integrate it with respect to the limits imposed with the condition 
that the integral (the area under the curve) must be equal to 1. 
 
To see how this works, we will normalize the rectangular distribution function f(x) = c with respect to the 
containment limits ±a. 

. 
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So, from the normalization condition, we can see that the constant c must be equal to 
a2
1 .  Thus the final equation 

for the rectangular probability distribution function with containment limits ±a centered on the y-axis (i.e., the center 

of the distribution is x = 0) is simply 
a

xf
2
1)( = . 

 
(We could also have obtained this same result simply by noting that the area of a rectangle is equal to the product of 
its height, c, and its width, 2a, and then imposing the normalization requirement to obtain 2ac = 1 directly.  
However, for more complicated probability distribution functions, such simple determinations of area aren’t usually 
possible so it is useful to know how to normalize a function using integrals.) 
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The variance, σ2, of a probability distribution function is a measure of the dispersion, or “width”, of the distribution.  
Formally, it is obtained from the following integral of the normalized probability distribution function: 
 

∫= dxxfx )(22σ . 

 
For the rectangular probability distribution function, we obtain the variance as follows: 
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The standard deviation σ is simply the positive square root of the variance so for the rectangular distribution we 

obtain 
3

a
=σ . 

 
The rectangular distribution may be used to model the statistical behavior of an uncertainty contributor if and only if 
all three of the following conditions are fulfilled: 
 
1) Uniform Probability.  By definition, the rectangular distribution assumes that the uncertainty contributor has a 

uniform probability of occurrence between two limits- in other words, every value between and including the 
limits is equally probable.  Nature usually does not display this sort of behavior except in the case of discrete 
events (e.g., a roll of the dice, a coin toss) so this is actually a stringent requirement to fulfil. 

 
2) 100% Containment.  It follows from the uniform probability criterion that the uncertainty contributor has zero 

probability of occurrence outside of the limits of the distribution.  In other words, every possible value 
attributable to the uncertainty contributor lies within the two limits. 

 
3) Minimum Limits.  If the limits ±a encompass the entire distribution, then so do the limits ±na where n is any 

number greater than or equal to 1.  It is therefore imperative that the limits we assume for a given uncertainty 
contributor be the minimum bounding limits.  Otherwise we will derive an uncertainty estimate that is too large. 

 
 
 
 
 

f(x)

-a a

1/(2a)

Figure 1.  The rectangular or uniform distribution models cases where the probability of 
some

0
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With these three criteria in mind, we can identify situations where it is appropriate to model the statistical behavior 
of an uncertainty contributor by the rectangular distribution. 
 
1) Digital Resolution. 
 
The uncertainty due to the finite resolution of digital indicating devices is a common uncertainty contributor.  If the 
resolution of the device is R then we know that an indicated value x could lie anywhere between x ± 0.5R.  Further, 
unless there’s some reason to believe otherwise, we can assume that the sensed value has an equal probability of 
lying anywhere within that interval.  In this case the rectangular distribution is a good model for the uncertainty due 
to finite resolution and the standard uncertainty due to the finite resolution of the indicating device is  
 

3
5.0 RuR = . 

 
2) RF Phase Angle. 
 
RF power incident on a load will be delivered with a phase angle θ between -π and +π and the probability of 
occurrence between these limits is uniform.  Consequently the standard uncertainty of the phase angle is 
 

81.1
3
≅=

π
θu . 

 
3) As an Expression of Ignorance. 
 
The rectangular distribution is frequently used in cases where the actual distribution is unknown.  This is often the 
case in type B uncertainty estimates where the value and associated uncertainty of an uncertainty contributor might 
be taken from a reference book.  For example, if we needed the coefficient of linear thermal expansion of a material, 
we might go to a reference book and find a value of “150 ppm/in°C ± 20 ppm/in°C”.  This is the only information 
given in the book and no information is given on how the uncertainty was derived.  In cases like this, one typically 
treats the uncertainty as a rectangular distribution.  (However, if the uncertainty is dominated by such a contributor, 
it is good practice to obtain more information on how it was derived and, in particular, try to determine the actual 
distribution that applies.) 
 
3.3.2.2 Triangular distribution 
 
It may be the case that we have 100% minimum containment limits but we know that there is a tendency for the 
values of the uncertainty contributor to be near the center of the distribution.  For example, imagine two gage blocks 
soaking together on a soak plate.  After they’ve reached thermal equilibrium, the most likely value for the difference 
in temperature between them is zero, and the distribution of possible temperatures on either side of zero tails off 
quickly to some limiting value (determined experimentally).  The simplest probability distribution to model this 
behavior is the triangular distribution, which is given by the following normalized probability distribution function: 
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It can be shown that the variance of this distribution is 
6

2
2 a
=σ  so the standard uncertainty of an uncertainty 

contributor modeled by a triangular distribution with containment limits ± a is 
6

au = . 
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In the gage block example above, suppose we know from experiment that temperature differences between the 
blocks can be as large as 0.1°F.  Then we would obtain as the estimate for the uncertainty of the temperature 
difference between the two blocks 
 

FFuT
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0408.0
6
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== . 

 
Use of this distribution is subject to the same criteria given for the rectangular distribution except, obviously, the 
uniform probability criterion. 
 

 
3.3.2.3 Normal distribution 
 
This distribution is characterized by two parameters: the mean µ, which determines the location of the center of the 
distribution, and the standard deviation σ, which determines the width of the distribution. 
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This distribution is of fundamental importance since it represents the statistical behavior of much of what we see in 
nature.   

 
 
 

x
µ

f(x)

Figure 3.  The normal distribution.

f(x)

0-a a
Figure 2.  The triangular distribution is used to model cases where 100% containment limits are
known and values are more likely to be near the mean than at the extremes.
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3.3.2.4 U distribution 
 
This distribution models situations where the most likely value of a measurand is at or near the containment limits.  
For example, because of the way thermostats work, room temperature tends to be near the maximum allowed 
deviation from the set point, i.e., the room temperature is most likely to be too hot or too cold relative to the set 
point.  The probability distribution function is  
 

axafor
xa

xf pp−
−

=
22
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π

 

 

where ± a are the containment limits.  The standard deviation is given by 
2

a
=σ . 

 
For example, suppose that room temperature is an uncertainty contributor and that the temperature is allowed to vary 
within the limits of ±5°C.  Then the standard uncertainty due to room temperature variations is given by 
 

.54.3
2
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3.3.2.5 Poisson distribution 
 
The Poisson distribution is used to model the number of random occurrences of some event in a given unit of time or 
space.  Examples of situations that can be modeled by this distribution include the number of bad parts produced by 
a machine in a day, the number of flaws in a bolt of fabric, or the distribution of counts detected from a radioactive 
sample.  There are four necessary conditions under which the Poisson distribution is a good approximation: 
 
1) The variable of interest must be a count of events (consequently, the variable of interest must be a positive 

integer or zero); 
 
2) The random events must be separate and independent of each other; 
 
3) The random events must be equally likely to occur in a given unit of time or space; 
 
4) The random events should be rare relative to the maximum number of events possible. 
 

f(x)

0-a a

Figure 4.  The U distribution models cases where the value of a measurand is likely to be near the 
containment limits.
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If the average number of random events per unit of space or time is m, then the probability P of x events occurring in 
that unit is5 

!
);(

x
emmxP

mx −

=  

 
where e is the base of natural logarithms (e is approximately equal to 2.71828). 
 
Figure 5 shows the Poisson distribution for various values of m.  Note that as m increases, the distribution widens 
and moves to the right.  In addition, as m increases the Poisson distribution approaches the normal distribution.  
Since the Poisson distribution is concerned with discrete counts of events, it is not actually a smooth curve and 
should more correctly be visualized as a frequency polygon.  For our purposes, however, we have connected the dots 
to unclutter the graph in order to show the behavior of the distribution with increasing m. 
 
Looking at the curve for m = 1 we see that it is extremely narrow and tails off very rapidly to the right illustrating 
the fact that if an event is truly rare within some specified interval of time or space, then the probability of many 
occurrences in the same interval is very low.  Conversely, as the average number of occurrences increases, the 
probability of large departures from the average within the specified interval increases.  In addition, since the area 
under the curve must be equal to 1 regardless of the value of m, as the distribution widens the probability of 
obtaining the average number of events decreases (i.e., the height of the curve decreases). 

 
This is one of the more difficult distributions to understand so we shall illustrate its use with several examples.  For 
a more detailed treatment the reader should consult a text on statistics. 
 
Example 1.  A molding machine produces 1000 washers per hour and on average 10 of those washers are defective.  
What is the probability of this machine producing 20 defective washers in an hour? 
 
Solution.  In this case the average number of random occurrences is m = 10 and we would like to find the 
probability of obtaining x = 20 occurrences.  From the equation for the Poisson distribution we find that the 
probability is  
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5 The symbol “!” is used to denote “factorial”.  The factorial of a number n is equal to the product of the positive 

integers lesser than or equal to n: n! = (1)(2)(3)…(n-1)(n)= i
n

i
Π
=1

.  By definition, 0! = 1. 
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Figure 5.  The Poisson distribution for various values of m.
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This is a pretty low probability, so if 20 defective washers were ever produced in an hour, we can be quite confident 
that it was not due to chance: we would look to the molding machine, the material, or the operator for the cause. 
 
Example 2.  The average number of counts detected by a radiation counter is 1 per second.  What is the probability 
of obtaining 5 counts in one second? 
 
Solution.  This is the same problem as Example 1 but with m = 1 and x = 5.  So the probability of obtaining 5 counts 
in one second is 
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The Poisson distribution has the interesting property that its standard deviation is equal to the square root of the 
average number of occurrences: 
 

m=σ . 
 
With this property in mind we can answer such questions as in Example 3. 
 
Example 3.  0.1 ml of a 105 dilution of a bacterial culture is spread on a nutrient plate.  The following day, 57 
colonies are observed.  How many bacteria were in the original culture? 
 
Solution.  We would like to express our answer in terms of cfu/ml ± s, where s is the standard deviation of the 
probability distribution function governing the distribution of bacterial colonies on the surface of a plate.  This 
distribution is the Poisson distribution so the standard deviation is s = √57 ≅ 7.55.  The number of “colony forming 
units” in the original culture must have been 
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with a standard deviation of  
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so our result is (5.7 ± 0.8) x 107 cfu/ml.  We round the final estimate to one decimal place so as not to convey the 
impression of great accuracy in our estimate. 
 
3.3.2.6 Summary 
 
For containment limits ±a, the standard uncertainty estimates associated with the various probability distributions 
are as follows: 
 

Rectangular: aa 5774.0
3
≅  

Triangular: aa 4082.0
6
≅  

U: aa 7071.0
2
≅ . 
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For the Poisson distribution, the standard uncertainty estimate is √m where m is the average number of random 
occurrences in a given time or space interval. 

3.3.3 Type B evaluation of standard uncertainty 
 
Some uncertainty contributors cannot be evaluated statistically, or else a statistical evaluation would be impractical, 
or a statistical evaluation may simply be unnecessary.  In these cases, the magnitude and associated uncertainty of an 
influence quantity has to be estimated based on past experience, taken from a handbook, extracted from a calibration 
report, etc.  Estimates obtained in this way are called type B estimates.  (As with type A uncertainty estimates, the 
reader should note that the designation “type B” refers to the method by which the uncertainty estimate was 
obtained.  “Type B” does not refer to the nature of the uncertainty contributor itself; in particular, the reader should 
avoid the temptation to identify type B uncertainty estimates as “systematic” components of uncertainty.) 
 
Example.  The type B estimates of uncertainties in the tensile strength case we are examining come from the 
uncertainty due to the finite resolution of the micrometer and the calibration uncertainty of the testing machine. 
 
We record the dimensions of the test bar only to the nearest 0.001 in, but suppose that the micrometer can read to 
100 µin.  We have then a rectangular distribution with containment limits ±50 µin and a standard uncertainty of  
 

ininuR µµ 9.28
3

50
== . 

 
The standard deviation of the thickness measurements was 1000 µin and the standard deviation of the width 
measurements was 837 µin.  The uncertainty due to the finite resolution of the micrometer is so much smaller than 
the standard deviation of the thickness and width measurements that we shall ignore it and take as the uncertainty of 
the thickness and width measurements the standard deviation of these measurements.  Clearly, our micrometer is 
much better than our molding and curing process. 
 
The calibration certificate of the testing machine says only that it meets D638 requirements.  D638 requires that the 
indication of the testing machine has to be correct to within ±1%.  The average of the force indications in this 
example was 852 lb, so we know that the average of the force indication is good to within approximately ±8.5 lb.  
This is much smaller than the standard deviation of the 5 test results, so we will neglect the calibration uncertainty of 
the testing machine and take as the uncertainty in the force needed to break the bars the standard deviation of the 5 
test results, or 34.93 lb.  Clearly, variability in the material itself overwhelms any uncertainty contribution from the 
testing machine. 
 
In this case it turns out that the variability in the material itself, as well as variability in the molding and curing 
processes, leads to type A estimates of uncertainties that are much larger than possible type B estimates of 
uncertainties.  This is often the case with materials testing, particularly plastics and rubber, but it is not necessarily 
the case and in general the relative sizes of type A and type B estimates of uncertainties should be at least roughly 
estimated for different materials before neglecting one or the other. 

3.4 Sensitivity coefficients 
 
Sensitivity coefficients are essentially conversion factors that allow one to convert the units of an input quantity into 
the units of the measurand.  For example, if our measurand is “resistance” (measured in ohms, Ω) and if temperature 
(measured in degrees Celsius, °C) is an input quantity, then we can see immediately that to convert a temperature 
into a resistance we will have to multiply the temperature by some constant c with units of Ω/°C. 
 
Sensitivity coefficients are also, and more importantly, measures of how much change is produced in the measurand 
by changes in an input quantity.  Mathematically, sensitivity coefficients are obtained from partial derivatives of the 
model function f with respect to the input quantities.  In particular, the sensitivity coefficient ci of the input quantity 
xi is given by 
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which expresses mathematically how much f changes given an infinitesimal change in xi. 
 
Example.  The model function we’re using for the tensile strength determination is  
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FS =  

 
where S is the tensile strength, F is the force needed to break a test bar, and T and W are the thickness and width 
respectively of the test bar.  We obtain the sensitivity coefficients as follows: 
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The average thickness of the test bars is 0.125 in, the average width is 0.4998 in, the average force needed to break 
the bars is 852.0 lb and the average tensile strength is 13673 lb/in2.  With these values we can determine the values 
of each of the sensitivity coefficients: 
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Sensitivity coefficients can also be evaluated experimentally.  In cases where the model function is not known, 
obviously it is not possible to determine the sensitivity coefficients mathematically so it would be necessary to 
devise suitable experiments to determine the sensitivity coefficients.  In this tensile strength measurement, for 
example, we could evaluate experimentally the effect of varying thickness on the tensile strength result on a given 
material while holding the width and force constant.  But experiment has its limits.  In this example, holding the 
thickness and width constant while varying the force would be extremely difficult, if not impossible, since, as we 
have seen, variability in the material itself is a major factor in the uncertainty of the tensile strength. 
 
In principle, however, the experimental evaluation of sensitivity coefficients is simple and works like this: 
 
If the variable of interest is x, we begin by selecting a small range centered on the expected or typical value of x.  
For example, we might vary the thickness of the tensile strength sample over the range 0.124 in to 0.126 in.  Having 
selected the range and prepared suitable test specimens, perform the complete test method on each of the test 
samples, and plot the results with the value of x on the x-axis of the graph and the test results on the y-axis.  Fit a 
least-squares line through the data points.  The slope of this line will be the desired sensitivity coefficient. 
 
This method will work if the change in test result is approximately linear over the range of varying x selected.  If the 
behavior is highly non-linear over the selected range, this method will not work.  However, if it is possible to narrow 
the range over which x is varied, then this narrower range will be more nearly linear.  (In other words, a suitably 
small segment of a curve will be approximately linear.) 
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Alternatively, sensitivity coefficients can be estimated numerically if the model function is known.  Since the partial 
derivatives given above simply express how much the measurand changes given an infinitesimal change in one of 
the input quantities, while holding the other input quantities constant, we can numerically estimate the sensitivity 
coefficients as follow. 
 
1) Estimating the force sensitivity coefficient. 
 
We are interested in estimating how much the tensile strength changes given small changes in the force, while 
holding the thickness and width constant.  To do this, we can use our model function to determine the tensile 
strength at the average thickness and width at three different forces: one force will be the average force determined 
experimentally as above; the other two forces will be slightly lesser and slightly greater than the average force. 
 
The average thickness of the test bars is 0.125 in, the average width is 0.4998 in, and the average force needed to 
break the bars is 852 lb.  With these values, we can determine numerically the value of the force sensitivity 
coefficient: 
 

Force Thickness Width Tensile 
Strength Difference 

851 lb 0.125 in 0.4998 in 13621 lb/in2 
16 lb/in2 

852 lb 0.125 in 0.4998 in 13637 lb/in2 

853 lb 0.125 in 0.4998 in 13653 lb/in2 
16 lb/in2 

 
From these calculations, we can see that a 1 lb change in the force causes a change of 16 lb/in2 in the tensile 
strength.  In other words, the sensitivity coefficient is 16 (lb/in2)/lb, or 16 in-2.  This happens to be almost exactly the 
same sensitivity coefficient as determined above using the partial derivatives directly. 
 
2) Estimating the thickness sensitivity coefficient. 
 
To determine the thickness sensitivity coefficient, we proceed exactly as we did with the force: we hold the force 
and width constant and calculate the tensile strength for small changes in the thickness. 
 

Force Thickness Width Tensile 
Strength Difference 

852 lb 0.1249 in 0.4998 in 13648 lb/in2 
-11 lb/in2 

852 lb 0.1250 in 0.4998 in 13637 lb/in2 

852 lb 0.1251 in 0.4998 in 13627 lb/in2 
-10 lb/in2 

 
If we average these two differences, we see that a 0.0001 in change in the thickness causes a -10.5 lb/in2 change in 
the tensile strength.  In other words, the thickness sensitivity coefficient is: 
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This estimate differs from the estimate obtained above using partial derivatives by less than 4%.  This is pretty good, 
but we could improve this estimate by considering smaller changes in the thickness and retaining more significant 
figures in the intermediate calculations as follows: 
 

Force Thickness Width Tensile 
Strength Difference 

852 lb 0.12499 in 0.4998 in 13638.55 lb/in2 
-1.10 lb/in2 

852 lb 0.12500 in 0.4998 in 13637.45 lb/in2 

852 lb 0.12501 in 0.4998 in 13636.36 lb/in2 
-1.09 lb/in2 

 
Averaging these two differences, we see that a 0.00001 in change in the thickness produces a change in the tensile 
strength of -1.095 lb/in2.  So this estimate of the thickness sensitivity coefficient is -109500 lb/in3.  The estimate 
obtained using partial derivatives was -109100 lb/in3, so we can see that just by considering smaller changes in the 
input quantity and retaining more significant figures in the intermediate calculations we can greatly improve the 
numerical estimate of a sensitivity coefficient.  We could go even further considering ever-smaller changes in the 
thickness and retaining more significant figures in the intermediate calculations: 
 

Force Thickness Width Tensile Strength Difference 

852 lb 0.124999 in 0.4998 in 13637.564 lb/in2 
-0.109 lb/in2 

852 lb 0.125000 in 0.4998 in 13637.455 lb/in2 

852 lb 0.125001 in 0.4998 in 13637.346 lb/in2 
-0.109 lb/in2 

 
This yields an estimate of the thickness sensitivity coefficient of -109000 lb/in3. 
 
3) Estimating the width sensitivity coefficient. 
 
To determine the width sensitivity coefficient, we proceed exactly as we did with the force and thickness: we hold 
the force and thickness constant and calculate the tensile strength for small changes in the width: 
 

Force Thickness Width Tensile 
Strength Difference 

852 lb 0.125 in 0.49979 in 13637.73 lb/in2 
-0.28 lb/in2 

852 lb 0.125 in 0.49980 in 13637.45 lb/in2 

852 lb 0.125 in 0.49981 in 13637.18 lb/in2 
-0.27 lb/in2 

 
(In this example, we have retained more significant figures than in the previous two examples because the tensile 
strength is relatively insensitive to small changes in width, as can be seen in the table.) 
 
Averaging these two differences, we see that a 0.00001 in change in the width causes a -0.275 lb/in2 change in the 
tensile strength.  Therefore, the width sensitivity coefficient is  
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This differs from the estimate obtained using partial derivatives by less than 1%. 
 
 
The important things to remember when evaluating sensitivity coefficients numerically are: 
 
1) Evaluate the sensitivity coefficients using small changes in the parameter of interest.  It would not do, for 

example, to evaluate the tensile strength at 0.025, 0.125, and 0.225 inches when estimating the thickness 
sensitivity coefficient: these changes are far too gross to approximate the infinitesimal changes presupposed in 
the determination by partial derivatives.  For example, using these numbers, we might try to estimate the 
thickness sensitivity coefficient as follows: 

 

Force Thickness Width Tensile 
Strength Difference 

852 lb 0.025 in 0.4998 in 68187 lb/in2 
-54550 lb/in2 

852 lb 0.125 in 0.4998 in 13637 lb/in2 

852 lb 0.225 in 0.4998 in 7576 lb/in2 
-6061 lb/in2 

 
Averaging these differences shows that a 0.1 in change in the thickness produces a change in the tensile strength 
of -30306 lb/in2 for a sensitivity coefficient of -303060 lb/in3, which is almost three times larger than the 
estimate obtained using partial derivatives. 
 
On the other hand, this stricture is important only when the measurand is sensitive to changes in an input 
quantity.  For example, tensile strength is not very sensitive to changes in the force.  If we had estimated the 
force sensitivity coefficient at 752 lb, 852 lb, and 952 lb we would still have obtained a sensitivity coefficient of 
about 16 in-2.  Still, to be safe, it is best to consider small changes in the input quantity. 

 
2) Retain enough significant figures in the intermediate calculations so that small changes in the measurand can be 

detected, as in the width and thickness examples above.  Using width as an example, suppose that we used the 
following data obtained simply by rounding the tensile strength estimate to the nearest pound per square inch: 

 

Force Thickness Width Tensile 
Strength Difference 

852 lb 0.125 in 0.49979 in 13638 lb/in2 
-1 lb/in2 

852 lb 0.125 in 0.49980 in 13637 lb/in2 

852 lb 0.125 in 0.49981 in 13637 lb/in2 
0 lb/in2 

 
Then we would obtain as our estimate of the width sensitivity coefficient –50000 lb/in3, which is clearly an 
inadequate estimate given what we already know about its best estimated value.  The reason this estimate is so poor 
is that we didn’t retain enough significant figures in the intermediate calculations of tensile strength to see accurately 
the small changes that changes in width produce in the tensile strength. 
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If the model function is known, it is probably simpler just to obtain the sensitivity coefficients directly from the 
partial derivatives.  However, if the model function is complex then numerical approximation may be simpler.  For 
example, the function defining Brinell hardness B in terms of applied force F, diameter of the indenter D, and 
diameter of the indentation d 
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is differentiable in D and d, but a good deal of work is involved and the probability of making a mistake when taking 
the partial derivatives of B with respect to D and d is not negligible.  (See Appendix 3, however, for an example of 
an uncertainty estimate for Brinell hardness.  It would be a good exercise for the reader to estimate numerically the 
sensitivity coefficients in that example.) 

3.5 Combining the contributors 

3.5.1 Non-correlated input quantities 
 
Once all of the values of the uncertainty contributors ui have been estimated and reduced to one standard deviation, 
and the sensitivity coefficients ci have been determined, it is usually necessary only to “root-sum-square” their 
products, i.e., take the square root of the sum of the squares of the uncertainty estimates multiplied by the squares of 
their corresponding sensitivity coefficients, in order to determine the combined standard uncertainty uc: 
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Alternatively, we can determine the combined variance, which is simply the square of the combined standard 
uncertainty6: 
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In what follows, the equations will be simpler if we look at the combined variance. 

3.5.2 Correlated input quantities 
 
An important complication arises when input quantities are correlated.  Correlation occurs when the values of input 
quantities are not independent.  For example, in the tensile strength measurement we’ve been examining, the 
measurements of the thickness and width of the test bar are correlated because both quantities are measured with the 
same micrometer.  Or suppose that a load cell is calibrated with a set of 10-pound deadweights all calibrated at the 
same calibration laboratory.  In this case, amongst the input quantities are the uncertainties of the various 
combinations of deadweights and these uncertainties are correlated- the errors from the calibration lab are passed on 
to the calibration uncertainty of each of the weights which in turn impact the uncertainty of the load cell calibration.  
Correlated input quantities are common in testing so, although the subject is complicated, we have no choice but to 
examine how to handle them.  For a more detailed treatment of the subject, the reader is urged to consult the GUM. 
 
In the case of correlated input quantities, the combined variance is given by 
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6 A simplified derivation of this expression can be found in the GUM section E.3. 
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The correlation coefficient r(xi,xj) characterizes the degree of correlation between the input quantities xi and xj.  For 
noncorrelated (independent) input quantities, r will be equal to zero.  For perfectly correlated input quantities r will 
equal ±1.  For varying degrees of correlation, r will vary between +1 and –1. 
 
To estimate the correlation coefficient, we first must estimate the “covariance” of the two correlated input quantities.  
The covariance of the means of two correlated input quantities is estimated by 
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The correlation coefficient is then given by 
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where ),( ji xxs  is as given above, and )( ixs  and )( jxs  are the experimental standard deviations of the input 
quantities xi and xj. 
 
Example. The measurements of the thickness and width of the test bars are correlated, as discussed above, since T 
and W are measured independently and nearly simultaneously by the same micrometer.  Since we are dealing with 
correlated input quantities we must use the full expression for the combined variance: 
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Consequently, we have to determine the estimated correlation coefficients from the means and standard deviations 
of the thickness, width, and force: 
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(Although these quantities are indeed correlated, an examination of the correlation coefficient ( )WTr ,  shows that 
the degree of correlation is fairly small.  We could probably ignore correlation effects without greatly changing the 
final uncertainty estimate, but we will proceed to consider correlation effects.  Later, we’ll see how the final estimate 
compares to an estimate that ignores correlation effects.) 
 
Using the information we’ve gathered so far, we find that the combined variance is  
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which yields a combined standard uncertainty of  
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As noted above, although we are dealing with correlated input quantities, the degree of correlation is small and it 
may be safe to ignore the correlation.  If we ignore correlation, and simply root-sum-square the contributors and 
their associated sensitivity coefficients, as in section 3.5.1 above, then we obtain for the combined standard 
uncertainty  
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This differs from the more complete estimate by less than 0.2%.  This is not meant to imply that it is always safe to 
ignore correlation effects.  It just happens that in this example it is a safe approximation. 

3.5.3 Relative combined variance 
 
If the model function f is of the form 
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and the exponents pi are known positive or negative numbers, and if the uncertainty contributors are not correlated, 
then the relative combined variance can be determined from 
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Example.  The model function for our tensile strength measurement is 
 

TW
FS =  

 
which can also be written as 
 

.11 −−= WFTS  
 
Since we know that the degree of correlation between the thickness and width measurements is small, we can ignore 
correlation effects and find the relative combined variance and relative combined standard uncertainty as follows: 
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The estimate of the tensile strength result was 13636 lb/in2 and 4.2% of this is equal to about 570 lb/in2 as expected. 

3.6 Calculating the expanded uncertainty 
 
The GUM method of uncertainty estimation relies on identifying and quantifying the uncertainties of the input 
quantities and expressing those uncertainties as one standard deviation.  The combined standard uncertainty is 
consequently a standard deviation and for a normal distribution one standard deviation encompasses approximately 
68% of possible values of the measurand. 
 
Although the combined standard uncertainty can be used to express the uncertainty of a measurement result, in some 
commercial, industrial, or regulatory applications, or when health and safety are concerned, it is often necessary to 
give a measure of uncertainty that defines an interval about the measurement result that may be expected to 
encompass a larger fraction of the values that could reasonably be attributed to the measurand than does a single 
standard deviation.   
 
The additional measure of uncertainty that encompasses a large fraction of expected values of the measurand is 
called expanded uncertainty and is denoted by U. The expanded uncertainty U is obtained by multiplying the 
combined standard uncertainty by a coverage factor k: 
 

( ).ykuU c=  
 
The procedure for determining the coverage factor will simply be presented here.  The reader is urged to consult the 
GUM for more information and the rationale behind the procedure. 

3.6.1 Estimating the coverage factor k. 
 
To obtain the value of the coverage factor k, it is necessary to take into account the uncertainty of the estimate of the 
combined standard uncertainty uc(y).  This uncertainty is characterized by the “effective degrees of freedom” νeff of 
uc(y) which is a measure of how much information was available to make the estimate of uc(y).  A large number of 
degrees of freedom implies that more information was available for the estimate of uc(y). 
 
To encompass approximately 95% of the possible values of the measurand (95% is just a conventional level of 
confidence), it is usually the case that the coverage factor k will be a number in the range of 2 to 3.  For large values 
of νeff, k will be close to 2.  This corresponds to the fact that two standard deviations encompass approximately 95% 
of a normal distribution.  If limited information was available in making the uncertainty estimate, so that the 
uncertainty of the estimate is large, this will be reflected by a small number of degrees of freedom and a large value 
of k. 
 
The four-step procedure for calculating k is: 
 
1) Obtain the estimate of the measurand y and the estimate of the combined standard uncertainty uc(y). 
 
2) Estimate the effective degrees of freedom νeff using the Welch-Satterthwaite formula: 
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where νi is the degrees of freedom of the estimate of the magnitude of the uncertainty contributor xi.  The degrees of 
freedom of a Type A evaluation based on n repeated measurements is simply ν = n – 1.  If n independent 
observations are used to determine both the slope and intercept of a straight line by the least squares method, then 
the degrees of freedom of their respective standard uncertainties is ν = n – 2.  In general, for a least-squares fit of m 
parameters to n data points the degrees of freedom of the standard uncertainty of each parameter is ν = n – m. 
 
Estimating the degrees of freedom of a type B estimate of uncertainty can be quite difficult but the GUM gives an 
expression that can be used to estimate it7: 
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The quantity in large brackets is just the relative uncertainty of the estimate of u(xi).  For a Type B evaluation of 
standard uncertainty, it is a subjective quantity that may be estimated based on professional judgement. 
 
This is an important problem since, for example, the uncertainty of virtually every test will be affected by the 
calibration uncertainty of a testing machine or measuring device.  This calibration uncertainty is obtained as a Type 
B estimate since its value is obtained from the calibration report.  However, few calibration labs will report the 
number of degrees of freedom associated with their estimate of the calibration uncertainty, and it should not simply 
be assumed that it is “infinite” (as is often done) since estimates of calibration uncertainties might be good only to 
within 25% - maybe better, maybe worse - depending on the calibration lab.  (This doesn’t necessarily mean that the 
calibration lab is not doing a good job, it does mean that uncertainty estimates are themselves subject to 
uncertainty.) 
 
Although this is the procedure recommended by the GUM, there are serious concerns about the idea of trying to 
quantify the uncertainty of an uncertainty estimate8.  While such an idea is certainly intellectually tractable, as a 
practical matter it should be recognized that it can be difficult enough to evaluate the uncertainty of a measurement 
result in a meaningful way, let alone the uncertainty of that uncertainty.  The authors of the CODATA paper base 
their concerns on three points: 
 

i) “… although carrying out Type B evaluations of uncertainty is rarely easy, … such evaluations are 
usually done reliably for known effects.  The difficulty with [an uncertainty estimate] most often arises 
from an unrecognized effect, that is, an effect for which no component of uncertainty has been 
evaluated because its existence was not realized.  Trying to assign an ‘uncertainty to an uncertainty’ 
based only on known components of uncertainty is not necessarily reliable. 

 
ii) “… if there are doubts about the reliability of an initially assigned uncertainty, then one should use the 

information on which the doubts are based to reevaluate it (which in most cases means increasing the 
uncertainty) so that the doubts are removed.  In short, all available information should be used in the 
evaluation of components of uncertainty. 

 
iii) “The third and final observation concerns the possibility of including a margin of safety in the 

[uncertainty estimates] as is sometimes suggested.  In particular, should the [uncertainty estimates] 
include an extra component so that they are ‘certain’ to be correct?  … [such extra components of 

                                                           
7 GUM G.4.2. 
 
8 P. J. Mohr and B. N. Taylor, CODATA recommended values of the fundamental physical constants: 1998, 
Rev. Mod. Phys., Vol. 72, No. 2, April 2000, p. 358. 



L:\GUIDES\UNCERTAINTY_GUIDE_TESTING  (07/24/2002) Page 29 of 42 

uncertainty should not be included] but rather, the best values based on all the available information 
[should be used], which in some cases means relying on the validity of the result of a single 
experiment or calculation.  This approach … provides a faithful representation of our current state of 
knowledge with the unavoidable element of risk that that knowledge may include an error or 
oversight.” 

 
So, while it is best to expend some effort in determining the best value of a type B estimate of uncertainty and 
associated degrees of freedom to the degree commensurate with the importance and intended use of the uncertainty 
estimate, we shall illustrate the GUM method with an example. 
 
Example.  Suppose that one’s knowledge of how input quantity estimate xi was determined and how its standard 
uncertainty was evaluated leads one to judge that the value of u(xi) is good to within about 10%.  This may be taken 
to mean that the relative uncertainty is 0.10 and so we obtain as the estimate of the degrees of freedom of this 
uncertainty estimate  
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If the available information leads one to conclude that the estimate was good to within only about 25%, then one 
would have obtained 
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In the case of type B estimates of the uncertainties of input quantities modeled by probability distribution functions 
with finite containment limits ±a, the equation for estimating the degrees of freedom of the uncertainty estimate 
implies that νi → ∞ since the containment limits –a and +a are chosen in such a way that the probability of the 
quantity in question lying outside the limits is extremely small or zero.  Allowing vi to approach infinity poses no 
difficulty in applying the Welch-Satterthwaite formula since we have the following well-known limit: 
 

.01lim =
∞→ νν

 

 
If all of the uncertainty contributors are obtained via Type B estimates with infinite degrees of freedom, the estimate 
of the combined standard uncertainty will also have infinite degrees of freedom.   
 
3) Obtain the t-factor tp(νeff) from the Student’s t-table (see Appendix 2) corresponding to the degrees of freedom 

νeff and the required level of confidence p.  If νeff is not an integer, as will usually be the case, one should round 
or truncate νeff down to the nearest integer. 

 
4) Take k = tp(νeff) and find the expanded uncertainty U = kuc(y). 
 
Example.  Continuing with the tensile strength example, we calculate the number of effective degrees of freedom 
νeff as follows: 
 
Recall that the combined standard uncertainty uc was found to be 571 lb/in2.  The uncertainties of the force, 
thickness and width measurements were 34.93 lb, 0.001 in, and 0.000837 in respectively.  Each of these three 
uncertainties were estimated on the basis of 5 repeat measurements.  Consequently, we have Type A estimates of 
uncertainties with n = 5 and νi = n – 1 = 4 degrees of freedom.  Finally, the sensitivity coefficients of these input 
quantities were found to be cF = 16.01 in-2, cT = -109100 lb/in3, and cW = -27286 lb/in3. 
 
Using the Welch-Satterthwaite equation we obtain the following estimate of the effective degrees of freedom of the 
estimate of the combined standard uncertainty: 
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Consulting the Student’s t-table (see Appendix 2), we find that the value of t corresponding to 4 degrees of freedom 
at the 95% level of confidence is t = 2.78.  So the expanded uncertainty of the tensile strength result is  
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This is about 12% of our test result of 13600 psi.  We round the final uncertainty estimate to no more than two 
significant figures so as not to convey the impression of greater accuracy than is warranted.  Standard rounding 
practice such as the one found in section 6.4 of ASTM E29 should be followed, although it is common practice 
always to round uncertainty estimates up to one or two significant figures so as to obtain a “conservative” estimate.  
Guidelines for retaining significant figures in test results can be found in section 7 of E29.  It is best to do these 
uncertainty calculations on a spreadsheet so that intermediate-rounding errors can be avoided.  In this case, rounding 
errors were negligible. 

3.7 Reasonability 
 
Although this uncertainty estimate involved a good deal of work, we can be reasonably confident that we have the 
best estimate of the final tensile strength result given the available information.  For a material destined for a critical 
automotive component, for example, we may be justified in investing such effort in our uncertainty estimation.  (Of 
course, in such a case it would be even more important to collect far more data than we did in this example.)  
However, it is often the case that, even for critical components, engineering tolerances are established such that the 
finished product can withstand fairly large variations in material component properties.  Which is to say that we are 
unlikely ever to need to devote such effort to an uncertainty analysis as we have done here. 
 
The above is not meant to trivialize the need for rigorous estimation of measurement uncertainty, but let’s take a 
“cruder” approach to the estimation of the uncertainty of our tensile strength result and see how it compares to the 
more rigorous approach: 
 
Suppose that we know, from long experience with the mechanical properties of plastics, that the calibration 
uncertainties of the testing machine and micrometer, as well as the finite resolution of these devices, are negligible 
compared to the variability of the material itself.  Then, as a quick first approximation to the uncertainty of a tensile 
strength measurement, we might look to the standard deviation of the 5 test results.  In this case, we have the 
standard deviation as 482.8 lb/in2.  This standard deviation was derived based on 5 measurements, so we know that 
we have 4 degrees of freedom.  Consulting the Student’s t-table for 4 degrees of freedom we find that k = 2.78 is the 
coverage factor corresponding to the 95% level of confidence.  Multiplying the standard deviation of the tensile 
strength results by 2.78 we obtain a quick uncertainty estimate of approximately 1300 lb/in2. 
 
This estimate is 19% smaller than the more rigorous estimate of 1600 lb/in2- the price we pay for estimating 
uncertainty based on limited information9.  However, depending on the application and the needs of the customer, it 

                                                           
9 Although this is often the case, it isn’t a general rule.  It could be the case that uncertainty estimates based on 
limited information could be too large.  In this case, it happens that the estimate is too small. 
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could be entirely adequate10.  The amount of effort invested in an uncertainty estimate must be dictated by the needs 
of the user of the measurement result and associated uncertainty estimate.  If the user is satisfied with a quick 
estimate then he also must accept the fact that he is assuming the risks associated with making decisions based on an 
uncertainty estimate that is itself quite uncertain.  The important thing is that the uncertainty must be reported 
correctly, without exaggerating its reliability, and with as much information as is needed to tell the user of the 
uncertainty how it was estimated.  This way, the user can form his own judgements concerning the nature of the 
estimate and its reliability. 
 
In the end, every uncertainty estimate should be subjected to a “reasonability check”.  The analyst should ask 
questions such as “Is this estimate reasonable?” “Is this estimate in line with what I know about the nature of the 
measurement and of the material?”  “Can this estimate be supported with proficiency testing data, or data 
accumulated as part of a measurement assurance program?”  Uncertainty estimates that look strange- either too big 
or too small- should be re-evaluated, looking first for mathematical blunders, second for uncertainty contributors 
whose magnitudes may have been poorly estimated or completely neglected.  Finally, it may be necessary to revise 
the mathematical model. 
 
In this tensile strength example, the reasonability test is based on a comparison of the rigorous estimate with the 
quick estimate and on our own experience with tensile strength determinations of plastic compounds.  Based on 
these criteria, we conclude that either estimate obtained in this example is equally reasonable.  Other situations may 
involve different criteria.  But in all cases, reasonability is finally based on “gut feel” and experience11.   

3.8 Reporting uncertainty 
 
When reporting the result of a measurement, at a minimum one should 
 
1) Give a full description of how the measurand Y is defined; 
 
2) State the result of the measurement as Y = y ± U and give the units of y and U; 
 
3) Give the value of the coverage factor k used to obtain U; 
 
4) Give the approximate level of confidence associated with the interval y ± U and state how it was determined. 
 
The numerical values of the estimates of the measurand and expanded uncertainty should not be given with an 
excessive number of significant digits.  It usually suffices to quote uncertainty estimates to no more than two 
significant figures. 
 
When stating measurement results and uncertainty estimates it is always advisable to err on the side of providing too 
much information rather than too little and this information must be stated as clearly as possible.   
 
Example.  The statement of our tensile strength result might take the following form: 
 

                                                           
10 In fact, we could have dispensed with the rigorous analysis entirely and looked only to the quick estimate.  If the 
quick estimate is not overly optimistic, and if it satisfies the customer’s tolerance requirements, we need go no 
further.  If the estimate is felt to be too optimistic based on our experience with the measurement in question, or if it 
is unsuitable for customer requirements, then we must delve into a more rigorous estimate. 
 
11 The reader should not allow this fact to lead him to question the “mathematical objectivity” of uncertainty 
estimates.  Although there is undoubtedly a large element of subjectivity involved, a rigorous uncertainty estimate is 
based on objective mathematical machinery (albeit presented in essentially “recipe” form in this document).  But 
mathematics is just as subject to the “garbage in, garbage out” syndrome as is, for example, computer programming.  
Human judgement based on sound technical experience and professional integrity is of paramount importance in 
evaluating the merits of any uncertainty estimate. 
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“The tensile strength at break of this material as defined by ASTM D638 was found to be (13600 ± 1600) pounds 
per square inch.  The number after the ± symbol is the numerical value of an expanded uncertainty U = kuc, with U 
determined from a combined standard uncertainty uc = 571 pounds per square inch using a coverage factor of k = 
2.78 and defines an interval estimated to have a level of confidence of 95 percent with 4 effective degrees of 
freedom.” 

3.9 Summary of the method 
 
1. Specify the measurand 
 

Clearly specify the quantity to be determined and the method by which it is to be determined.  This specification 
must include all of the factors that could significantly affect the measurement result including but not limited to 
environmental conditions, sampling procedures, sample preparation procedures, as well as the test or calibration 
method to be used. 

 
2. Derive the mathematical model 
 

Express mathematically the relationship between the measurand and all of the input quantities upon which the 
measurand depends.  This mathematical model should contain every quantity, including all corrections, that can 
contribute significantly to the uncertainty of the result of the measurement. 
 

3. Quantify the influence quantities 
 

Estimate the value of each input quantity either by the statistical analysis of repeated observations or by other 
means such as taking the uncertainty of a reference standard from a calibration certificate, estimating 
temperature effects on test or calibration results based on theoretical predictions, estimating the uncertainty of 
physical constants based on data in reference books and so on. 

 
4. Evaluate the standard uncertainty of each influence quantity 
 

Evaluate the standard uncertainty of the estimates of the values for the input quantities.  For the uncertainty of 
an input estimate based on the statistical analysis of repeated observations, the estimate is made as described in 
section 2.3.1 (Type A).  For estimates obtained by other means, the standard uncertainty is evaluated as 
described in section 2.3.3 (Type B). 

 
5. Evaluate sensitivity coefficients and covariances 
 

For noncorrelated input quantities, evaluate their respective sensitivity coefficients either directly by 
differentiation of the function used to model the measurement or indirectly by experiment.  For correlated input 
quantities, evaluate the associated covariances. 

 
6. Calculate the measurement result 
 

Calculate the result of the measurement based on the mathematical model adopted and the estimates of the input 
quantities. 

 
7. Determine the combined standard uncertainty 
 

Determine the combined standard uncertainty of the measurement result from the standard uncertainties and 
covariances of the input estimates. 

 
8. Determine the expanded uncertainty 
 

If it is necessary to provide an expanded uncertainty, first estimate the effective degrees of freedom of the 
estimate of the combined standard uncertainty.  Consulting a t-table, multiply the combined standard 
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uncertainty by the coverage factor associated with the estimated degrees of freedom and desired level of 
confidence. 

 
9. Report the measurement result and associated uncertainty estimate 
 

Report the measurement result and either the combined standard uncertainty or the expanded uncertainty as 
described in section 2.8. 

 

3.10 Uncertainty “budgets” 
 
It should be apparent by now that uncertainty analysis is not a trivial task.  Even for the simplest measurements it is 
often the case that a great deal of thought must go into the estimate of the measurement uncertainty.  The person 
who undertakes an uncertainty analysis has to be thoroughly familiar with the principles of the measurement in 
question- familiarity with the requirements of the test procedure or standard alone is not sufficient- otherwise 
significant uncertainty contributors are likely to be poorly estimated or else missed entirely. 
 
Every uncertainty analysis will include some assumptions and it is important that these assumptions be documented 
and justified.  Uncertainty contributors taken to be negligible must still be documented and justified. 
 
It is, unfortunately, common practice to regard uncertainty analysis as the pursuit of an “uncertainty budget”, the 
ubiquitous tables appearing in guidance documents such as UKAS M3003 and even in the GUM itself. 
 
The tables found in these documents are the least important part of the analysis.  They merely summarize the data in 
a convenient format.  What is most important is that a clear, well-documented narrative be available for each 
uncertainty analysis.  Such a detailed exposition of an uncertainty analysis is not needed every time an analysis is 
undertaken, however.  If the conditions and assumptions used to estimate an uncertainty are the same in one case as 
they were in a past case, then the narrative developed for a past case is applicable to the present case and need not be 
duplicated.  At most what may be necessary is to update the values of specific uncertainty contributors if new 
information becomes available. 
 
Specifically, what is not acceptable as documentation of an uncertainty estimate is a table, often generated by 
commercially available uncertainty analysis software or freeware, with no indication of any of the assumptions 
embodied in the table, and/or no indication of where the data in the table came from.  In addition, since it is often the 
case that software developers will use differing terminologies, a narrative accompanying the table is even more vital 
since part of the narrative will have to be devoted to explaining the terminology used by the software’s author. 
 
At a minimum, a well-documented uncertainty evaluation will contain the following elements: 
 
1) The identity and value of each input estimate and its standard uncertainty together with a description of how 

they were obtained; 
 
2) The estimated covariances or estimated correlation coefficients (preferably both) associated with all input 

estimates that are correlated, and the methods used to obtain them, or a statement to the effect that they were 
assumed or found to be negligible and were omitted; 

 
3) The degrees of freedom for the standard uncertainty of each input estimate and how they were obtained and, 

where appropriate, a calculation of the effective degrees of freedom of the calculated combined standard 
uncertainty; 

 
4) The functional relationship between the measurand and the input quantities and, if deemed useful, the partial 

derivatives or sensitivity coefficients, or a statement that they were assumed or found to be negligible.  Any 
experimentally determined coefficients should always be given together with a description of how they were 
obtained. 
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Appendix 1. Definitions 
 
accuracy (of measurement)  (VIM 3.5):  closeness of the agreement between the result of a measurement and a 
true value of the measurand 
 

NOTES: 
 

1. “Accuracy” is a qualitative concept 
2. The term precision should not be used for “accuracy”. 

 
{Author’s note: “an accepted reference value” may be used in place of “a true value” in this definition.} 

 
bias (ISO 3534-1):  the difference between the expectation of the test results from a particular laboratory and an 
accepted reference value 
 

NOTE:  Bias is the total systematic error as contrasted to random error.  There may be one or more systematic 
error components contributing to the bias.  A larger systematic difference from the accepted reference value is 
reflected by a larger bias value. 

 
combined standard uncertainty (GUM 2.3.4):  standard uncertainty of the result of a measurement when that 
result is obtained from the values of a number of other quantities, equal to the positive square root of a sum of terms, 
the terms being the variances or covariances of these other quantities weighted according to how the measurement 
result varies with changes in these quantities 
 
correlation (ISO 3534-1):  the relationship between two or several random variables within a distribution of two or 
more random variables 
 

NOTE:  Most statistical measures of correlation measure only the degree of linear relationship. 
 
coverage factor (GUM 2.3.6):  numerical factor used as a multiplier of the combined standard uncertainty in order 
to obtain an expanded uncertainty 
 

NOTE:  A coverage factor, k, is typically in the range of 2 to 3. 
 
error (of measurement)  (VIM 3.10):  result of a measurement minus a true value of the measurand 
 

NOTES: 
 

1. Since a true value cannot be determined, in practice a conventional true value is used. 
2. When it is necessary to distinguish “error” from “relative error”, the former is sometimes called “absolute 

error of measurement”.  This should not be confused with “absolute value of error”, which is the modulus 
of the error. 
 

{Author’s note: “an accepted reference value” may be used in place of “a true value” in this definition.} 
 
expanded uncertainty (GUM 2.3.5):  quantity defining an interval about the result of a measurement that may be 
expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the 
measurand 
 

NOTES: 
 

1. The fraction may be viewed as the coverage probability or level of confidence of the interval. 
2. To associate a specific level of confidence with the interval defined by the expanded uncertainty requires 

explicit or implicit assumptions regarding the probability distribution characterized by the measurement 
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result and its combined standard uncertainty.  The level of confidence that may be attributed to this interval 
can be known only to the extent to which such assumptions may be justified. 

 
influence quantity (VIM 2.7):  quantity that is not the measurand but that affects the result of the measurement 
 

Examples: 
 

a) temperature of a micrometer used to measure length; 
b) frequency in the measurement of the amplitude of an alternating electric potential difference; 
c) bilirubin concentration in the measurement of hemoglobin concentration in a sample of human blood 

plasma. 
 
level of confidence (GUM C.2.29):  The value of the probability associated with a confidence interval or a statistical 
coverage interval 
 

NOTE: The value is often expressed as a percentage. 
 
measurand (VIM 2.6):  particular quantity subject to measurement 
 

Example:  Vapor pressure of a given sample of water at 20°C. 
 

NOTE:  The specification of a measurand may require statements about quantities such as time, temperature, 
and pressure. 

 
measurement (VIM 2.1):  set of operations having the object of determining a value of a quantity 
 
precision  (ISO3534-1):  the closeness of agreement between independent test results obtained under stipulated 
conditions 
 

NOTES: 
 

1. Precision depends only on the distribution of random errors and does not relate to the true value or the 
specified value. 

2. The measure of precision is usually expressed in terms of imprecision and computed as a standard 
deviation of the test results.  Less precision is reflected by a larger standard deviation. 

3. “Independent test results” means results obtained in a manner not influenced by any previous result on the 
same or similar test object.  Quantitative measures of precision depend critically on the stipulated 
conditions.  Repeatability and reproducibility conditions are particular sets of extreme conditions. 
 

repeatability (VIM 3.6):  closeness of the agreement between the results of successive measurements of the same 
measurand carried out under the same conditions of measurement 
 

NOTES: 
 

1. The conditions are called repeatability conditions. 
2. Repeatability conditions include: the same measurement procedure; the same observer; the same measuring 

instrument used under the same conditions; the same location; repetition over a short period of time. 
3. Repeatability may be expressed quantitatively in terms of the dispersion characteristics of the results. 

 
reproducibility (VIM 3.7):  closeness of the agreement between the results of measurements of the same measurand 
carried out under changed conditions of measurement 
 

NOTES: 
 

1. A valid statement of reproducibility requires specification of the conditions changed. 



L:\GUIDES\UNCERTAINTY_GUIDE_TESTING  (07/24/2002) Page 36 of 42 

2. The changed conditions may include but are not limited to: principle of measurement; method of 
measurement; observer; measuring instrument; reference standard; location; conditions of use; time. 

3. Reproducibility may be expressed quantitatively in terms of the dispersion characteristics of the results. 
4. Results are here usually understood to be corrected results. 

 
standard uncertainty (GUM 2.3.1):  uncertainty of the result of a measurement expressed as a standard deviation 
 
trueness (ISO 3534-1):  the closeness of agreement between the average value obtained from a large series of test 
results and an accepted reference value 
 

NOTES: 
 

1. The measure of trueness is usually expressed in terms of bias. 
2. Trueness has been referred to as “accuracy of the mean”.  This usage is not recommended. 

 
type A evaluation of uncertainty (GUM 2.3.2):  method of evaluation of uncertainty by the statistical analysis of 
observations 
 
type B evaluation of uncertainty (GUM 2.3.3):  method of evaluation of uncertainty by means other than the 
statistical analysis of a series of observations 
 
uncertainty of measurement (VIM 3.9):  parameter, associated with the result of a measurement, that characterizes 
the dispersion of the values that could reasonably be attributed to the measurand 
 

NOTES: 
 

1. The parameter may be, for example, a standard deviation (or a given multiple of it), or the half-width of an 
interval having a stated level of confidence. 

2. Uncertainty of measurement comprises, in general, many components.  Some of these components may be 
evaluated from the statistical distribution of the results of series of measurements and can be characterized 
by experimental standard deviations.  The other components, which can also be characterized by standard 
deviations, are evaluated from assumed probability distributions based on experience or other information. 

3. It is understood that the result of the measurement is the best estimate of the value of the measurand, and 
that all components of uncertainty, including those arising from systematic effects, such as components 
associated with corrections and reference standards, contribute to the dispersion. 
 

This definition is that of the “Guide to the expression of uncertainty in measurement” in which its rationale is 
detailed (see in particular 2.2.4 and Annex D).  
 



L:\GUIDES\UNCERTAINTY_GUIDE_TESTING  (07/24/2002) Page 37 of 42 

Appendix 2. Student’s t-distribution 
 
Value of tp(ν) from the t-distribution for degrees of freedom ν that defines an interval –tp(ν) to + tp(ν) that 
encompasses the fraction p of the distribution. 
 

Fraction p in percent Degrees of 
freedom ν 68.27(a) 90.00 95.00 95.45(a) 99.00 99.73(a) 

1 1.84 6.31 12.71 13.97 63.66 235.8 
2 1.32 2.92 4.30 4.53 9.92 19.21 
3 1.20 2.35 3.18 3.31 5.84 9.22 
4 1.14 2.13 2.78 2.87 4.60 6.62 
5 1.11 2.02 2.57 2.65 4.03 5.51 
6 1.09 1.94 2.45 2.52 3.71 4.90 
7 1.08 1.89 2.36 2.43 3.50 4.53 
8 1.07 1.86 2.31 2.37 3.36 4.28 
9 1.06 1.83 2.26 2.32 3.25 4.09 

10 1.05 1.81 2.23 2.28 3.17 3.96 
11 1.05 1.80 2.20 2.25 3.11 3.85 
12 1.04 1.78 2.18 2.23 3.05 3.76 
13 1.04 1.77 2.16 2.21 3.01 3.69 
14 1.04 1.76 2.14 2.20 2.98 3.64 
15 1.03 1.75 2.13 2.18 2.95 3.59 
16 1.03 1.75 2.12 2.17 2.92 3.54 
17 1.03 1.74 2.11 2.16 2.90 3.51 
18 1.03 1.73 2.10 2.15 2.88 3.48 
19 1.03 1.73 2.09 2.14 2.86 3.45 
20 1.03 1.72 2.09 2.13 2.85 3.42 
25 1.02 1.71 2.06 2.11 2.79 3.33 
30 1.02 1.70 2.04 2.09 2.75 3.27 
35 1.01 1.70 2.03 2.07 2.72 3.23 
40 1.01 1.68 2.02 2.06 2.70 3.20 
45 1.01 1.68 2.01 2.06 2.69 3.18 
50 1.01 1.68 2.01 2.05 2.68 3.16 
100 1.005 1.660 1.984 2.025 2.626 3.077 
∞ 1.000 1.645 1.960 2.000 2.576 3.000 

(a)For a quantity z described by a normal distribution with expectation µz and standard deviation σ, the interval  
µz ± kσ encompasses p = 68.27, 95.45, and 99.73 percent of the distribution for k = 1, 2, and 3 respectively. 
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Appendix 3.  Uncertainty Estimate for a Brinell Hardness Test 
 
ASTM E10 equation 1 defines Brinell hardness (designated as B for the purposes of this example) as a function of 
the test force (F, measured in newtons), the diameter of the indenter (D, measured in mm), and the mean diameter of 
the indentation (d, measured in mm): 
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For the purpose of this model budget we’ll make the following assumptions: 
 
1) Assume that, according to the calibration certificate, the force indication of the testing machine “meets ASTM 

E10 tolerances”.  Section 15.1.1 of E10 specifies that “a Brinell hardness testing machine is acceptable for use 
when the test force error does not exceed ±1%.”  With a 3000 kgf (29400 N) test force, the uncertainty in the 
indication is then 294 N. 

 
2) Let’s assume that the test is performed with a nominally 10 mm diameter steel ball.  Section 5.2.1 of E10 

specifies that the maximum permitted deviation from this nominal value in any diameter is 0.005 mm and the 
calibration certificate states that the ball “meets ASTM E10 tolerances”.  We’ll take 0.005 mm as the 
uncertainty in the diameter of the ball. 

 
3) In the Brinell hardness test, two perpendicular diameters of the indentation are measured and the mean value of 

those two diameters is used as the value of d in equation (1).  Since one reading is not necessarily representative 
of the test piece as a whole, let’s assume that, in this case, 5 indentations were made on the test piece and that 
the mean diameters obtained for each indentation were 3.00, 3.10, 2.90, 3.05, and 2.95 mm.  The mean of these 
five results is 3.00 mm and the standard deviation is 0.079 mm.  We’ll use the standard deviation of 0.079 mm 
as the uncertainty of the mean of the diameter of any given indentation. 
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Given these assumptions, we see that, for a 10 mm indenter with a 3000 kgf test force and a 3.00 mm diameter mean 
indentation, the Brinell hardness number comes out to 415 HBS.  We can also evaluate the sensitivity coefficients: 

20141.0 −=
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= mm
F
BcF ; 3001.2 −⋅=

∂
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= mmN
D
BcD ; and 30.283 −⋅−=

∂
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Bcd .  The combined variance is 

then ( ) 422 6.505 −⋅= mmNBu  which yields a combined standard uncertainty of ( ) 25.22 −⋅= mmNBu . 
 
To determine the appropriate coverage factor to use to find the expanded uncertainty we have to determine the 
effective degrees of freedom νeff using the Welch-Satterthwaite equation.  For the test force and ball diameter we’ll 
assume infinite degrees of freedom, but for the indentation diameter we have four degrees of freedom so that 
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Referring to the t-table, we find that the coverage factor k corresponding to four degrees of freedom at the 95% 
confidence level is 2.78.  We then obtain for the expanded uncertainty U 
 

( ) ( )( ) 22 635.2278.2 −− ⋅≅⋅=⋅= mmNmmNBukU           (7). 
 
We can now state our measurement result as follows: 
 
“The Brinell hardness of this material as defined in ASTM E10 was found to be 415 HBS ± 63 HBS.  The stated 
uncertainty of 63 HBS is an expanded uncertainty expressed at approximately the 95% confidence level using a 
coverage factor of k=2.78 corresponding to 4 effective degrees of freedom.” 
 
 
Table 1.  Summary Uncertainty Budget. 
 

Uncertainty 
Source  Estimated Value Distribution/ 

Divisor 
Sensitivity 
Coefficient 

Degrees of 
Freedom 

Standard 
Uncertainty 

Force Indication 294 N Rectangular/ 
√3 0.0141 mm-2 ∞ 2.393 N/mm2 

Ball Diameter 0.005 mm Rectangular/ 
√3 2.001 N/mm3 ∞ 0.006 N/mm2 

Indentation 
Diameter 0.079 mm Normal/1 -283 N/mm3 4 22.36 N/mm2 

 
           Effective Degrees of Freedom / Coverage Factor 

(for 95% level of confidence) 4 / 2.78 

Combined Standard Uncertainty 22.5 N/mm2 

              Expanded Uncertainty 63 N/mm2 ≅ 15% 
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Looking at this table, we can see that the greatest uncertainty contributor by far is the diameter of the indentation 
(about 10 times larger than the next largest contributor which is the uncertainty due to the force indication), 
reflecting the fact that, in this example at least, variability in the material itself is the greatest contributor to the 
uncertainty.  Therefore, we can obtain an uncertainty estimate based on just the standard deviation of the 5 hardness 
determinations. 
 
In this example, the diameters obtained were 3.00, 3.10, 2.90, 3.05, and 2.95 mm corresponding to Brinell hardness 
values of 414, 388, 444, 401, and 429 HBS.  The standard deviation of these 5 hardness values is 22 HBS.  
Assuming that these 5 results were drawn from a normal distribution with mean 415 HBS and standard deviation 22 
HBS, and applying the coverage factor k = 2.78 from the Student’s t-table for 4 degrees of freedom at the 95% level 
of confidence yields an expanded uncertainty of 62 HBS, which is only 1.6% smaller than the initial estimate of 63 
HBS. 
 
The lesson to be learned here is that when material variability is the largest uncertainty contributor, it is usually 
unnecessary to exert all of the effort needed to determine sensitivity coefficients, etc., as we have done in this 
example.  The statistics of the test results will usually provide a sufficient basis for forming a reasonable uncertainty 
estimate.  In this case, the dominant influence quantity can reasonably be described by a normal distribution. 



L:\GUIDES\UNCERTAINTY_GUIDE_TESTING  (07/24/2002) Page 41 of 42 

References and Useful Web Sites 
 
References: 
 
ANSI/NCSL, Z540-2-1997, “U.S. Guide to the Expression of Uncertainty in Measurement”, 1st ed., October 1997. 
 
Eurachem/CITAC, “Quantifying Uncertainty in Analytical Measurement”, 2nd edition, 2000. 
 
European cooperation for Accreditation, EA-3/02, “The Expression of Uncertainty in Quantitative Testing”. 
 
European cooperation for Accreditation, EA-4/02, “Expression of the Uncertainty of Measurement in Calibration”, 
December 1999.  (Replaces EAL-R2). 
 
ILAC-G17:2002 Introducing the Concept of Uncertainty of Measurement in Testing in Association with the 
Application of the Standard ISO/IEC 17025 
 
ISO, “International Vocabulary of Basic and General Terms in Metrology” (VIM), 2nd ed., 1993. 
 
ISO 3534-1, “Statistics - Vocabulary and symbols – Part 1: Probability and general statistical 
terms”. 
 
ISO 3534-2, “Statistics – Vocabulary and symbols – Part 2: Statistical quality control”. 
 
ISO 3534-3, “Statistics – Vocabulary and symbols – Part 3: Design of experiments 
 
ISO 5725-1, “Accuracy (trueness and precision) of measurement methods and results – Part 1: General principles 
and definitions”. 
 
ISO 5725-2, “Accuracy (trueness and precision) of measurement methods and results – Part 2: Basic method for the 
determination of repeatability and reproducibility of a standard measurement method”. 
 
ISO 5725-3, “Accuracy (trueness and precision) of measurement methods and results – Part 3: Intermediate 
measures of the precision of a standard measurement method”. 
 
ISO 5725-4, “Accuracy (trueness and precision) of measurement methods and results – Part 4: Basic methods for the 
determination of the trueness of a standard measurement method”. 
 
ISO 5725-5, “Accuracy (trueness and precision) of measurement methods and results – Part 5: Alternative methods 
for the determination of the precision of a standard measurement method”. 
 
ISO 5725-6, “Accuracy (trueness and precision) of measurement methods and results – Part 6 Use in practice of 
accuracy values”. 
 
ISO/DTS 21748, “Guide to the use of repeatability, reproducibility and trueness estimates in measurement 
uncertainty estimation”. 
 
ISO/IEC Guide 33:1989, “Uses of certified reference materials”. 
 
ISO/IEC 17025:1999, “General requirements for the competence of calibration and testing laboratories”. 
 
United Kingdom Accreditation Service, “The Expression of Uncertainty in Testing”, UKAS publication ref: LAB 
12, 1st ed., September 2000. 
 



L:\GUIDES\UNCERTAINTY_GUIDE_TESTING  (07/24/2002) Page 42 of 42 

United Kingdom Accreditation Service, M3003, “The Expression of Uncertainty and Confidence in Measurement”, 
1st ed., December 1997. 
 
 
Useful Web Sites: 
 
American National Standards Institute (ANSI): www.ansi.org 
 
American Society for Testing and Materials (ASTM): www.astm.org 
 
American Society of Mechanical Engineers (ASME): www.asme.org 
 
Co-Operation on International Traceability in Analytical Chemistry (CITAC): www.citac.ws 
 
Eurachem: www.eurachem.bam.de 
 
European cooperation for Laboratory Accreditation (EA): www.european-accreditation.org 
 
International Laboratory Accreditation Cooperation (ILAC): www.ilac.org/ 
 
International Organization for Standardization (ISO): www.iso.ch 
 
International vocabulary of basic and general terms in metrology (VIM): www.cornnet.nl/~mlbroens/vim.htm 
 
National Conference of Standards Laboratories International (NCSLI, formerly known as NCSL, the National 
Conference of Standards Laboratories): www.ncslinternational.org 
 
National Institute of Standards and Technology (NIST): www.nist.gov 
 
NIST-SEMATECH Engineering Statistics Internet Handbook: www.itl.nist.gov/div898/handbook/index.htm 
 
Uncertainty Analysis: www.itl.nist.gov/div898/handbook/mpc/section5/mpc5.htm 
 
United Kingdom Accreditation Service (UKAS): www.ukas.com 


